Math, asked by kushalsaini248, 4 months ago

in a triangle ABC , AD bisects LA. prove that AC >CD

Answers

Answered by SoyanshuMohapatra
2

Answer:

What is LA here? Make it clear.

Answered by Anonymous
2

Answer:

Step-by-step explanation:

The proof is explained step-wise below :

Step-by-step explanation:

Given : m∠C > m∠B and AD bisects ∠A

To Prove : m∠ADB > m∠ABC

Proof : Since m∠C > m∠B

⇒ m∠ACB > m∠ABC

⇒ m∠ACB + m∠CAD > m∠ABC + m∠BAD .....(1)

(AD bisects ∠A ⇒m∠CAD = m∠BAD )

In ΔABD,

m∠ABC + m∠BAD + m∠ADB = 180°

Therefore, m∠ABC + m∠BAD = 180° – ∠ADB ....(2)

In ΔACD,

m∠ACD + m∠CAD + m∠ADC = 180°

Therefore, m∠ACB + m∠CAD = 180° – m∠ADC ....(3)

From (1), (2) and (3), we get

180° – m∠ADC > 180° – m∠ADB

⇒ m∠ADB – m∠ADC > 180° – 180°

⇒ m∠ADB – m∠ADC > 0

⇒ m∠ADB > m∠ADC

Hence proved.

Similar questions