Math, asked by sreevidhyajishnu9871, 8 months ago

In a triangle ABC , angle B= 120 Length of side b = 33 Sum of other 2 sides is 36.Find the area of triangle

Answers

Answered by saounksh
4

Answer:

area \:  =  \frac{27}{4}  \sqrt{1219}

Step-by-step explanation:

Calculation of side length

Le x and 36-x be the two unknown sides AB and BC respectively.

Using cosine formula, we have

 \cos( {120}^{o} )  =   \frac{ {x}^{2} +  {(36 - x)}^{2} -  {33}^{2}   }{2x(36 - x)}

 -  \frac{1}{2}  = \frac{ {x}^{2} +  {(36 - x)}^{2} -  {33}^{2}   }{2x(36 - x)}

 - x(36 - x) =  {x}^{2}  +  {(36 - x)}^{2}  -  {33}^{2}

 - 36x +  {x}^{2}  = 2 {x}^{2}  - 72x +  {36}^{2}  -  {33}^{2}

 {x}^{2}  - 36x + 207 = 0

x =  \frac{36 +  -  \sqrt{( {36}^{2}  - 4 \times 207)}}{2 \times 1}

x =  \frac{36 +  -  \sqrt{468} }{2}

x =  \frac{36 +  -   \sqrt{( {2}^{2} \times  {3}^{2}  \times 13 )} }{2}

x =  \frac{36 +  - 6 \sqrt{13} }{2}

x = 18 +  - 3 \sqrt{13}

Now

when \: x = 18 + 3 \sqrt{13}

36 - x = 36 - (18 + 3 \sqrt{13)}

 = 18 - 3 \sqrt{13}

when \: x = 18 - 3 \sqrt{13}

36 - x = 36 - (18 - 3 \sqrt{13})

 = 18 + 3 \sqrt{13}

Hence the two sides are 18+3√13 and 18 -3√13.

Calculation of area

By Heron's Formula

area \:  =  \sqrt{(s)(s - a)(s - b)(s - c)}

 s = \frac{1}{2}(33+36) = \frac{69}{2}

 s-a = \frac{69}{2} - (18 - 3\sqrt{13})= \frac{33}{2} + 3\sqrt{13}

 s-b = \frac{69}{2} - 33 =\frac{3}{2}

 s-c = \frac{69}{2} - (18 + 3\sqrt{13})= \frac{33}{2} - 3\sqrt{13}

area \:  =  \sqrt{ \frac{69}{2} \frac{3}{2}( \frac{69}{2} + 3 \sqrt{13})( \frac{69}{2}  - 3 \sqrt{13} ) }

\frac{3}{4}  \sqrt{23(69 + 6 \sqrt{13})(69 - 6 \sqrt{13})  }

 =  \frac{3}{4}  \sqrt{23( {69}^{2}  -  {6}^{2} .13)}

 =  \frac{3}{4}  \sqrt{23 \times 4293}

 =  \frac{3}{4}  \sqrt{23 \times  {3}^{2}  \times  {3}^{2} \times 53 }

 =  \frac{3 \times 3 \times 3}{4}  \sqrt{1219}

 =  \frac{27}{4}  \sqrt{1219}

 = 235.67

Similar questions