Math, asked by adityakumar9943, 10 months ago

. In a triangle ABC, angleB is two-thirds of angleA and angleC is 20° more than angleA. Find the measures of the three
angles of the triangle.

Answers

Answered by theharshking1977
1

Answer:

60°

Step-by-step explanation:

Angle A = x

Angle B = 2x/3

Angle C = x+20°

Sum of all angles of a triangle = 180°

> x + 2x/3 + x+20° = 180°

> 2x/1 + 2x/3 = 180° - 20°

> 6x+2x/3 = 160°

> 8x/3 = 160°

> x = 160°*3/8

> x = 20° * 3

> x = 60°

HOPE YOU UNDERSTAND : THANK YOU

Answered by Anonymous
2

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{Angle \ A, \ Angle \ B \ and \ Angle \ C}

\sf{ are \ 60°, \ 40° \ and \ 80° \ respectively.}

\sf\orange{Given:}

\sf{\implies{Angle \ B \ is \ two-third \ of \ angle.}}

\sf{\implies{Angle \ C \ is \ 20° \ more \ than}}

\sf{Angle \ A.}

\sf\pink{To \ find:}

\sf{Measures \ of \ all \ the \ angles.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ Angle \ A \ be \ x.}

\sf{\therefore{Angle \ B=\frac{2x}{3}}}

\sf{\therefore{Angle \ C=x+20}}

\sf{Sum \ of \ all \ angles \ of \ triangle \ is \ 180°}

\sf{Angle \ A +Angle \ B + Angle \ C=180}

\sf{x+\frac{2x}{3}+x+20=180}

\sf{Multiply \ both \ sides \ by \ 3 \ throughout}

\sf{3x+2x+3x+60=540}

\sf{8x=540-60}

\sf{8x=480}

\sf{x=\frac{480}{8}}

\sf{x=60}

\sf{\therefore{Angle \ A=60°}}

\sf{\therefore{Angle \ B=\frac{2\times60}{3}=40°}}

\sf{\therefore{Angle \ C=60+20=80°}}

\sf\purple{\tt{\therefore{Angle \ A, \ Angle \ B \ and \ Angle \ C}}}

\sf\purple{\tt{are \ 60°, \ 40° \ and \ 80° \ respectively.}}

Similar questions