in a triangle ABC b(by tangent rule)=
Answers
Answer:
plz mark as brainliest
Step-by-step explanation:
In any triangle ABC we have
⇒ bsinB = csinC
⇒ bc = sinBsinC
⇒ (b−cb+c) = sinB−sinCsinB+sinC, [Applying Dividendo and Componendo]
⇒ (b−cb+c) = 2cos(B+C2)sin(B−C2)2sin(B+C2)cos(B−C2)
⇒ (b−cb+c) = cot (B+C2) tan (B−C2)
⇒ (b−cb+c) = cot (π2 - A2) tan (B−C2), [Since, A + B + C = π ⇒ B+C2 = π2 - A2]
⇒ (b−cb+c) = tan A2 tan (B−C2)
⇒ (b−cb+c) = tanB−C2cotA2
Therefore, tan (B−C2) = (b−cb+c) cot A2. Proved.
Similarly, we can prove that the formulae (ii) tan (C−A2) = (c−ac+a) cot B2 and (iii) tan (A−B2) = (a−ba+b) cot C2.
Alternative Proof law of tangents:
According to the law of sines, in any triangle ABC,
asinA = bsinB = csinC
Let, asinA = bsinB = csinC = k
Therefore,
asinA = k, bsinB = k and csinC = k
⇒ a = k sin A, b = k sin B and c = k sin C ……………………………… (1)
Proof of formula (i) tan (B−C2) = (b−cb+c) cot A2
R.H.S. = (b−cb+c) cot A2
= ksinB−ksinCksinB+ksinC cot A2, [Using (1)]
= (sinB−sinCsinB+sinC) cot A2
= 2sin(B−C2)cos(B+c2)2sin(B+C2)cos(B−c2)
= tan (B−C2) cot (B+C2) cot A2
= tan (B−C2) cot (π2 - A2) cot A2, [Since, A + B + C = π ⇒ B+C2 = π2 - A2]
= tan (B−C2) tan A2 cot A2
= tan (B−C2) = L.H.S.
Similarly, formula (ii) and (iii) can be proved.