in a triangle abc bd is perpendicular to ac and ce perpendicular to ab if bd and ce intersect at o prove that angle boc is 180-a
Answers
Answer:
In triangle ABC,□A+□B+□C=180°(angles sum property)In triangle ABC,□A+□B+□C=180°(angles sum property)
□B+□C=180°-□A ...........(1)
In triangle OBC,□BOC+□OBC+□OCB=180°(angles sum property)
□OBC+□OCB =180°-□BOC ..........(2)
Now, In triangle BEC
□BEC+□CBE+□BCE=180°
90°+□CBE+□BCE=180°
□CBE+□BCE=90°............(3)
Similarly,In triangle BCD
□BCD+□DBC =90°............(4)
Adding (3) and (4),we get
□CBE+□BCE+□BCD+□DBC=180°
□B+□OCB+□C+□OBC=180°
□B+□C+□OCB+□OBC=180°
180°-□A+180°-□BOC=180° (from 1 and 2 )
□A=180°-□BOC ........Proved
Read more on Brainly.in - https://brainly.in/question/7381336#readmore
Step-by-step explanation: