Chemistry, asked by Anonymous, 1 year ago

In a triangle ABC, ∠C = 3∠B = 2 (∠A+ ∠B).

What are the three angles?

Answers

Answered by Rythm14
8

Given :-

  • ∠C = 3∠B = 2(∠A+ ∠B)

To Find :-

Value of ∠A, ∠B and ∠C

Solution :-

C = 2(A + B)

C = 2A + 2B ---- 1

---------------

A + B + C = 180

A + B + 2A + 2B = 180 (From 1)

3A + 3B = 180 (Dividing by 3)

A + B = 60 ----2

----------------

A + B + C = 180

60 + C = 180 (From 2)

C = 180 - 60

C = 120°

----------------

2(A + B) = C  (Given)

2(A + B) = 3B

2A + 2B = 3B

B = 2A ---3

----------------

A + B = 60 (From 2)

A + 2A = 60

3A = 60

A = 60/3

∠A = 20°

----------------

B = 2A (From 3)

B = 2(20)

∠B = 40°

----------------

  • ∠A = 20°
  • ∠B = 40°
  • ∠C = 120°

Anonymous: Thanka Hira :heart:
Rythm14: :)
Answered by Anonymous
13

SOLUTION:-

Given:

 \angle C = 3 \angle B= 2( \angle A+  \angle B)

If A, B & C are the angles of a triangle,

 \angle A +  \angle B +  \angle C = 180 \degree...........(1)

Given relation between the angles is:

 \angle C = 3 \angle B= 2( \angle A+  \angle B)

Therefore,

3 \angle B = 2( \angle A +  \angle B) \\  \\  2 \angle A= 3 \angle B - 2 \angle B \\  \\ 2 \angle A =  \angle B \\  \\  \angle A =  \frac{ \angle B}{2}

Substitute in equation (1):

 \frac{ \angle B}{2}  +  \angle B + 3 \angle B= 180 \degree \\  \\  \frac{ \angle B}{2}  + 4 \angle B= 180 \degree \\  \\  \angle B ( \frac{1 + 8}{2})  = 180 \degree \\   \\  \angle B \times  \frac{9}{2}  = 180 \degree \\  \\   \angle B =  \frac{180 \degree \times 2}{9}  \\  \\  \angle B= 20 \degree  \times 2 \\  \\  \angle B = 40 \degree

Thus,

 \angle C =3 \angle B \\  \\  =  > 3 \times 40 \degree \\  \\  =  > 120 \degree \\  \\  \\  \angle A =  \frac{ \angle B}{2}  \\  \\  =  >  \frac{40 \degree}{2}  \\  \\  =  >  \angle A = 20 \degree

Hence,

⚫angle A = 20°

⚫Angle B = 40°

⚫Angle C= 120°

Hope it helps ☺️

Similar questions