In a triangle ABC, COS A =3/5
then the sin²A + cos² A
plzzz help me with full explanation of answer I need
Answers
Answer:
cosA= 3/5and
cos A= base/hypotenuse
so on comparing ,
base =3
and hypotenuse=5
now using Pythagoras theorem ,
perpendicular length = 4
so,
sin A= 4/5
on substitution values
we get,
sin^2A + cos^2A=1
Given :
- In a Triangle ABC ,
- Cos A = 3/5
Find :
- sin²A + cos²A
Solution :
As we know that Cos A = B/H
Where,
B = Base
H = Hypotenuse
Therefore, by using Pythagoras Theorem
(Hypotenuse)² = (Base )² + (Perpendicular)²
Substituting the values in it, we get
↬ (5)² = (3)² + (Per.)²
↬25 = 9 + ( Per )²
↬ 25 - 9 = ( per )²
↬ 16 = ( Per )²
↬ √16 = Perpendicular
↬ 4 = Perpendicular
Now,
As we know Sin = P /H
And P = 4 , whereas H = 5
So, Sin = 4/5
Then, we got the appropriate values of :
- Sin A = 4/5
- Cos A = 3/5
→ Sin²A + Cos² A
Putting the value in the above equation :
→ (4/5)² + (3/5)²
→ (16/25) + (9/25)
→ (16 +9)/25
→(25/25)
→ 1
Therefore, the value of Sin²A + Cos² A is 1