in a triangle ABC, cos (B+C÷2) in terms of angle A
Answers
Answered by
5
Sol: In a ΔABC, ∠A + ∠B + ∠C = 180° [Angle sum property] ⇒ ∠A + ∠B = 180° - ∠C ⇒ (∠A + ∠B) / 2 = (180° - ∠C) / 2 ⇒ (∠A + ∠B) / 2 = (180° - ∠C) / 2 ⇒ (∠A + ∠B) / 2 = (90° - ∠C/ 2) ⇒ sin (∠A + ∠B) / 2 = sin (90° - ∠C/ 2) ⇒ sin (∠A + ∠B) / 2 = cos ∠C/ 2. [sin (90 - θ) = cos θ)]Therefore, sin (∠A + ∠B) / 2 in terms of angle c is cos ∠C/ 2.
himanshusingh52:
welcom
Answered by
5
Sol: In a ΔABC, ∠A + ∠B + ∠C = 180° [Angle sum property] ⇒ ∠A + ∠B = 180° - ∠C ⇒ (∠A + ∠B) / 2 = (180° - ∠C) / 2 ⇒ (∠A + ∠B) / 2 = (180° - ∠C) / 2 ⇒ (∠A + ∠B) / 2 = (90° - ∠C/ 2) ⇒ sin (∠A + ∠B) / 2 = sin (90° - ∠C/ 2) ⇒ sin (∠A + ∠B) / 2 = cos ∠C/ 2. [sin (90 - θ) = cos θ)]Therefore, sin (∠A + ∠B) / 2 in terms of angle c is cos ∠C/ 2.
by this you will get the answer
Similar questions