Math, asked by archanakumaristar200, 1 month ago

in a triangle ABC, D&E are two points AB and AC such that DE// BC and AD: BD = 3:5 . Find the ratio of area of ∆ADE to the area of trapezium BDEC I need step by step explainaton. ​

Answers

Answered by steveeabraham123
0

As, (AD)/(BD)=2/3<br> So,

<br> Since,

are Similar triangles(by using AA)<br>

So,

<br> Hence,

Answered by MysticSohamS
0

Answer:

so \: here \: □ABCD \: is \: a \: trapezium \\ moreover \: DE  \: ||  \: BC \\ so \: thus \: considering \: △ADE \: and \:  \: △ABC \\ ∠DAE = ∠BAC \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (common \: angle) \\ since \: DE \:   ||  \: BC \\ ∠ADE=∠ABC \:  \:  \:  \:  \:  \:  \: (corresponding \: angles \: theorem) \\  \\ so \: hence \:  \: △ADE \: similar \: to \: △ABC \:  \:  \:  \:  \:  \:  \: (AA \: testof \: similarityy

so \: hence \: then \\ by \: theorem \: in \: ratios \: of \: areas \: of \: similar \: triangles \\ we \: get \\  \frac{A(△ADE)}{A(△ABC)}  =  \frac{AD {}^{2} }{AB {}^{2} }  \\  \\ so \: here \:  \\  \frac{AD}{BD}  =  \frac{3}{5}  \\ so \: hence \: then \\ by \: invertendo \: we \: get \\   \frac{BD}{AD}  =  \frac{5}{3}  \\  \\ so \: so \: applying \: componendo \:  \\ we \: get \\  \frac{BD+AD}{AD}  =  \frac{5 + 3}{3}  \\  \\  \frac{AB}{AD}  =  \frac{8}{3}  \\ applying \: invertendo \: we \: get \\  \\  \frac{AD}{AB}  =  \frac{3}{8}

so \: hence \: then \\  \frac{A(△ADE)   }{ A(△ABC} =  \frac{AD {}^{2} }{AB {}^{2} }  \\  \\  =  (\frac{3}{8} ) {}^{2}  \\  \\  =  \frac{(3) {}^{2} }{(8) {}^{2} }  \\  \\  =  \frac{9}{64}  \:   \\ \\ so \: let \: the \: common \: multiple \: be \: k \\ ie \:  \: A(△ADE) = 9k \\ A(△ABC) = 64k

now \: then \: by \: area \: addition \: property \\ we \: get \\ A(△ABC) = A(△ADE) +A (□ABCD) \\ 64k = A (□ABCD) + 9k \\ ie \: A (□ABCD) = 55k \\  \\ so \: hence \: then \\  \frac{A(△ADE)  }{A (□ABCD)}  =  \frac{9k}{55k}  \\  \\  =  \frac{9}{55}

Similar questions