Math, asked by tanu729, 11 months ago

In a triangle ABC , E is the mid-point of median AD. show that ar(BED) =1/4 ar( ABC )

Answers

Answered by Anonymous
5

GIVEN:-

E is the mid-point of median AD.

TO PROVE:-

\small\sf{A(∆BED)=A(∆ABC)}

PROOF:-

\small\sf{In\:∆ABC,AD\:is\:median}

\small\sf{Hence,A(∆ABD)=A(∆ACD)}

\therefore\small\sf{A(∆ABD)=\frac{1}{2}A(∆ABC)}......(1)

(A median of a ∆ divides it into two equal triangles on same area)

\large\sf\underline\red{Similarly,}

\small\sf{In\:∆ABD,BE\:is\:median}

\large\sf\underline\blue{Hence,}

\small\sf{A(∆BED)=\frac{1}{2}A(∆ABD)}

\small\sf{A(∆BED)=\frac{1}{2}(\frac{1}{2}A(∆ABC))} from........(1)

\small\sf{A(∆BED)=\frac{1}{4}A(∆ABC)}

\small\sf{A(∆BED)=\frac{1}{4}A(∆ABC)}

Similar questions