Math, asked by krishnaditya00, 7 months ago

In a triangle ABC, if 2<A = 3<B = 6<C, calculate <A,<B, and <C.​

Answers

Answered by mhetreasmita1
3

Answer:

{ \large \sf \: Let \:  all  \: the \:  angles  \: be x.} \\ \\ \sf \: ∠A= \frac{x}{2}</p><p> \sf \: x,∠B= \frac{x}{3},∠C= \frac{x}{6} \\{ \large \sf \:so,}\: \:  \sf\frac{x}{2} +  \frac{x}{3}  +  \frac{x}{6} = 180° \large \sf \:    [sum \: of \: \\ \sf \: all \: the \: angles  \: of \:  triangle \:  is  \: 180°]\\ \sf \frac{6x + 4x + 2x}{12}  = 180° \\   \sf\frac{12x}{12}  = 180° \\  \sf \: x = 180° \\  \sf \: ∠A= \frac{x}{2}  =  \frac{180°}{2}  = 90° \\  \sf \: ∠B= \frac{x}{2}  =  \frac{180°}{3}  = 60° \\  \sf \: ∠C= \frac{x}{6}  =  \frac{180°}{6} =30°

Similar questions