Math, asked by CrispyTekker3674, 1 year ago

In a triangle abc if 3∆a=4∆b=6∆c. Calculate the angle

Answers

Answered by arc555
6

Let,

3∠a=4 ∠b=6∠c = k

 =  > ∠a =  \frac{k}{3}  \\   \\ =  > ∠b =  \frac{k}{4}  \\ \\   =  > ∠c =  \frac{k}{6}

By angle sum property; we have

∠a + ∠b + ∠c = 180°

 =  >  \frac{k}{3}  +  \frac{k}{4}  +  \frac{k}{6}  = 180 \\  \\  =  >  \frac{4k + 3k + 2k}{12}  = 180 \\  \\  =  > {4k + 3k + 2k} =  180 \times 12 \\  \\  =  > 9k = 180 \times 12 \\  \\  =  > k =  \frac{180 \times 12}{9}  \\  \\  =  > k = 240

Hence the angles are.

 =  > ∠a =  \frac{k}{3}  =  \frac{240}{3}   = 80\\   \\ =  > ∠b =  \frac{k}{4}  =  \frac{240}{4}   = 60\\ \\   =  > ∠c =  \frac{k}{6}  =  \frac{240}{6}  = 40

Similar questions