In a triangle ABC, if 3 angle A =4 angle B = 6 angle C, calculate the angles.
Who will give correct answer of this question. I will mark him brainliest
Answers
Answer:
Answer:
Given parameters
In ΔABC,
3∠A = 4∠B= 6∠C
Let us consider x = 3∠A = 4∠B = 6∠C
x = 3∠A
∠A = x/3………………….(1)
x = 4∠B
∠B = x/4…………………..(2)
x = 6∠C
∠C = x/6…………………….(3)
By using angle sum property
∠A + ∠B + ∠C = 1800
Put the values of ∠A, ∠B, ∠C
x/3 + x/4 + x/6 = 1800
Let us find the L.C.M of 3,4,6 i.e 12
(4x + 3x + 2x)/12 = 1800
9x = 2160
x = 2400
Substitute the value of x in eqaution (1), (2) and (3)
∠A= x/3
∠A= 240/3 = 80°
∠B= x/4
∠B= 240/4= 60°
∠C= x/6
∠C= 240/6 = 40°
Given:
In ∆ABC , 3∠A= 4∠B= 6∠C
Let x= 3∠A= 4∠B= 6∠C
X=3∠A
∠A= x/3
X=4∠B
∠B= x/4
X=6∠C
∠C= x/6
By angle sum property
∠A+∠B+∠C= 180°
Put the value of ∠A, ∠B, ∠C
X/3+x/4+x/6= 180°
L.c.m of 3,4,6 = 12
(4x + 3x +2x) /12 = 180°
9x = 12 × 180
X= (12× 180) /9
X= 240°
∠A= x/3
∠A= 240/3 = 80°
∠B= x/4
∠B= 240/4= 60°
∠C= x/6
∠C= 240/6 = 40°
_____________________________
Hence the angles be
∠A=80°
∠B=60°
∠C= 40°
_____________________________