In a triangle ABC if (a^2+b^2)/(a^2-b^2) sin(A-B)=1 and C is not right angle then cos(A-B)=
1) tan(C/2 + pi/4)
2) tan(C/2 - pi/4)
3) cos(C/2 + pi/4)
4) sin(C/2 - pi/4)
Answers
Given : In a triangle ABC if (a^2+b^2)/(a^2-b^2) sin(A-B)=1 and C is not right angle
To Find : cos(A-B)
1) tan(C/2 + pi/4)
2) tan(C/2 - pi/4)
3) cos(C/2 + pi/4)
4) sin(C/2 - pi/4)
Solution:
(a² + b²) Sin (A - B) / (a² - b²) = 1
a/SinA = b/sinB = c/SinC = k
=> a = kSinA , b = k SinB
=> (k²sin²A + k²Sin²B) Sin (A - B) /(k²sin²A - k²Sin²B) = 1
=> ( sin²A + Sin²B) Sin (A - B) / (sin²A - Sin²B) = 1
=> ( 2sin²A + 2Sin²B) Sin (A - B) / (2sin²A - 2Sin²B) = 1
=> ( 1 - Cos2A + 1 - Cos2B) Sin (A - B) / ( 1 - Cos2A - (1 - Cos2B)) = 1
=> ( 2 - (Cos2A + Cos2B)) Sin (A - B)/ ( Cos2B - Cos2A) = 1
=> ( 2 - 2Cos(A + B)Cos(A - B) Sin(A-B) / (2Sin(A + B)Sin (A - B) ) = 1
=> ( 1 - Cos(A + B)Cos(A - B) ) / Sin(A + B) = 1
=> {1 - Cos (π - C) Cos(A - B)) / Sin (π - C) = 1
=> 1 - Cos (π - C) Cos(A - B) = Sin (π - C)
=> Cos(A - B) = ( 1 - Sin (π - C) ) / Cos (π - C)
=> Cos(A - B) = ( 1 - Sin (C) ) / -Cos (C)
=> Cos(A - B) = - ( cos²C/2 + Sin²C/2 - 2SinC/2.CosC/2 ) / (Cos² C/2 - Sin²C/2)
=> Cos(A - B) = - ( cos C/2 - Sin C/2)² / (Cos² C/2 - Sin²C/2)
=> Cos(A - B) = - ( cos C/2 - Sin C/2) / (Cos C/2 + Sin C/2)
=> Cos(A - B) = - ( 1 - tan C/2) / (1 + tan C/2)
=> Cos(A - B) = - tan (π/4 - C/2)
=> Cos(A - B) = tan ( C/2 -π/4 )
Hence option 2 is correct
learn More:
Ifsin 990° sin 780° sin 390°+=K(tan 405° – tan 360°) then Kicos 540 ...
brainly.in/question/22239477
Maximum value of sin(cos(tanx)) is(1) sint (2)
brainly.in/question/11761816
evaluate cot[90-theta].sin[90-theta] / sin theta+cot 40/tan 50 - [cos ...
brainly.in/question/2769339