Math, asked by appal9931, 1 year ago

In a triangle abc if a=6 b=3 and cos(a-b)=4/5 the area of triangle is

Answers

Answered by SerenaBochenek
3

Given:

a = 6

b = 3

Cos (a-b) = 4/5

To Find:

The area of triangle = ?

Solution:

As we know,

⇒  tan(\frac{a-b}{2}) = \sqrt{\frac{1-cos(a-b)}{1+cos(a-b)}}

On putting the estimated value, we get

                   = \sqrt{\frac{1-\frac{4}{5} }{1+\frac{4}{5} } }

                   = \frac{1}{3}

Also,

⇒  tan(\frac{a-b}{2})=\frac{a-b}{a+b}\times cot(\frac{c}{2} )

On substituting the given values, we get

⇒  \frac{1}{3}=\frac{3}{9}\times cot(\frac{c}{2})

⇒  cot(\frac{c}{2})=1

     cot(\frac{c}{2}) =cot(\frac{\pi}{4} )

            \frac{c}{2} =\frac{\pi}{4} i.e., 90°

Now,

The area of triangle will be:

= \frac{1}{2}\times a\times b

= \frac{1}{2}\times 6\times 3

= 9 \ sq \ units

Thus, the area will be "9 sq units".

Answered by rohitkumargupta
2

HELLO DEAR,

In a triangle ∆abc,

GIVEN:-

In a triangle ∆ABC

\sf{a = 6, b = 3}

\sf{\cos ( a - b ) = \frac{4}{5}}

We know:- \sf{\tan\left(\frac{a-b}{2}\right) = }\sf{\sqrt{\frac{1-\cos (a-b)}{1+\cos (a-b)}}=}\sf{\sqrt{\frac{1-\frac{4}{5}}{1+\frac{4}{5}}}}

\sf{\rightarrow \tan\left(\frac{a-b}{2}\right) = }\sf{\sqrt{\frac{\frac{1}{\frac{5}{9}}}{5}}=} \sf{\frac{1}{3}}

Therefore,

\sf{\rightarrow \tan \left(\frac{a-b}{2}\right)=}  \sf{\frac{1}{3}}

Also we know:- \sf{\tan\left(\frac{a-b}{2}\right) = } \sf{\frac{a-b}{a+b} \times \cot \left(\frac{c}{2}\right)}

\sf{\frac{1}{3} = \frac{6-3}{6+3} \times \cot \left(\frac{c}{2}\right)}

\sf{\frac{1}{3}=\frac{3}{9} \times \cot \left(\frac{c}{2}\right)}

\sf{\cot \left(\frac{c}{2}\right) = 1 = \cot \left(\frac{\pi}{4}\right)}

On comparing both side we get,

\sf{\frac{c}{2} = \frac{\pi}{4}}

\sf{ {\therefore, } c = \frac{\pi}{2}=90{\degree}}

Therefore, the given triangle is a right angled triangle

\sf{ar\triangle ABC = \frac{1}{2} \times a \times b}

\sf{Area\:of \:Triangle \:ABC \:=} \sf{ \frac{1}{2} \times 6 \times 3 = 9  { sq.\: units }}

Hence, the area of triangle is 9 square units

I HOPE IT'S HELP YOU DEAR,

THANKS

Similar questions