Math, asked by savita2273, 1 year ago

in a triangle ABC if AD is a median then show that AB^2+AC^2=2(AD^2+BD^2)

Answers

Answered by akshaya331
5
-----❤HEY MATE❤-----
HERE'S UR ANSWER

HOPE IT HELPS...❤❤❤
PLS MARK IT AS BRAINLIEST ✔✔✔
Attachments:

munna5036: thanaki bf vunnadu ani telisindhi
munna5036: vadu na friend so ,lite tisukunna
munna5036: vunnava
supersayian: it is not necessary that median is perpendicular
akshaya331: vunnanu.....munna....
akshaya331: hmmm
Answered by Salmonpanna2022
1

Answer:

AB² + AC² = 2(AD² + BD²).

Step-by-step explanation:

(i)

In ΔAED,

⇒ AD² = AE² + DE²

⇒ AE² = AD² - DE²

(ii)

In ΔAEB,

⇒ AB² = AE² + BE²

           = AD² - DE² + BE²

           = AD² - DE² + (BD + DE)²  {BE = BD + DE}

           = AD² - DE² + BD² + DE² + 2BD * DE - DE²

           = AD² + BD² + 2BD * DE

(iii)

In ΔAEC,

⇒ AC² = AE² + EC²

           = AD² - DE² + EC²

           = AD² - DE² + (DC - DE)²

           = AD² - DE² + DC² + DE² - 2DC * DE

           = AD² + BD² - 2BD * DE {DC = BD}

On solving (ii) & (iii), we get

⇒ AB² + AC² = AD² + BD² + 2BD * DE + AD² + BD² - 2BD * DE

                     = AD² + BD² + AD² + BD²

                     = 2(AD² + BD)²

Hence proved.!

Attachments:
Similar questions