Math, asked by creativityworld2021, 6 months ago

In a Triangle ABC, If Angle A = 72 Degree and angle B = 63 Degree, Find Angle C.

Answers

Answered by RISHISAHA
2

Answer:

Here,

Angle A = 72 ⁰

Angle B = 63⁰

Therefore A/Q

angle A + angle B + angle C = 180 ⁰[angle sum property]

=>72⁰+63⁰+ angle C = 180 ⁰

=>Angle C=180⁰-135= 45⁰

Answered by suraj5070
476

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \tt In\: a \:\triangle \:ABC, \:If \angle A = {72}^{\circ}\: and \:\angle B = {63}^{\circ},  \\\tt Find\: \angle C.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  • \sf \bf ABC\: is \:a\: triangle
  •  \sf \bf \angle A = {72}^{\circ}
  • \sf \bf \angle B = {63}^{\circ}

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \sf \bf Find\:\angle C

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

{\underbrace {\overbrace {\color {orange} {\bf By\: using\: angle\: sum \:property\: of\: triangle}}}}

 \sf \bf \implies \angle A+\angle B+\angle C={180}^{\circ}

 \sf \bf \implies {72}^{\circ} +{63}^{\circ}+\angle C={180}^{\circ}

 \sf \bf \implies {135}^{\circ}+\angle C={180}^{\circ}

 \sf \bf \implies \angle C={180}^{\circ} - {135}^{\circ}

 \implies{\boxed {\boxed {\color {aqua} {\sf \bf \angle C ={45}^{\circ}}}}}

 {\underbrace {\color {red} {\underline {\color {red} {\overline {\color {red} {\sf \therefore The\:angle \:C\:is\:{45}^{\circ}}}}}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

_____________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 {\color {green} {\sf Identities}}

 \sf \bf {(a+b)}^{2}={a}^{2}+2ab+{b}^{2}

 \sf \bf {(a-b)}^{2}={a}^{2}-2ab+{b}^{2}

 \sf \bf (a+b) (a-b) ={a}^{2}-{b}^{2}

Similar questions