In a triangle ABC, if r:r1 = r2:r3then which of the following are true?
a^2 + b^2 + c^2=8R^2
sin^2 A +sin^2 B + sin^2 C = 2
a² +b² = c^2
∆=s(s-a)
Answers
Answered by
0
Step-by-step explanation:
r
1
=r
2
+r
3
+r⟹r
1
−r=r
2
+r
3
⟹sin
2
A
cos
2
B
cos
2
C
−sin
2
A
sin
2
B
sin
2
C
=sin
2
B
cos
2
A
cos
2
C
−sin
2
C
cos
2
A
cos
2
B
⟹sin
2
A
(cos
2
B
cos
2
C
−sin
2
B
sin
2
C
)=cos
2
A
(sin
2
B
cos
2
C
−sin
2
C
cos
2
B
)
⟹sin
2
A
cos
2
(B+C)
=cos
2
A
sin
2
(B+C)
⟹tan
2
A
=tan
2
(B+C)
⟹A=B+C⟹2A=180
∘
⟹A=90
∘
Similar questions