Math, asked by gsatyavinay, 9 months ago

in a triangle abc if tan(A-B/2)=1/3tan (A+B/2) then a:b​

Answers

Answered by MaheswariS
8

\textbf{Given:}

\mathsf{tan\left(\dfrac{A-B}{2}\right)=\dfrac{1}{3}\,tan\left(\dfrac{A+B}{2}\right)}

\textbf{To find:}

\textsf{a:b}

\textbf{Solution:}

\textbf{Napier's formula:}

\mathsf{In\;\triangle\,ABC,}

\boxed{\mathsf{tan\left(\dfrac{A-B}{2}\right)=\dfrac{a-b}{a+b}\,cot\dfrac{C}{2}}}

\mathsf{Consider,}

\mathsf{tan\left(\dfrac{A-B}{2}\right)=\dfrac{1}{3}\,tan\left(\dfrac{A+B}{2}\right)}

\mathsf{By\;Napier's\;formula,}

\mathsf{\dfrac{a-b}{a+b}\,cot\dfrac{C}{2}=\dfrac{1}{3}\,tan\left(\dfrac{180^\circ-C}{2}\right)}

\mathsf{\dfrac{a-b}{a+b}\,cot\dfrac{C}{2}=\dfrac{1}{3}\,tan\left(90^\circ-\dfrac{C}{2}\right)}

\mathsf{\dfrac{a-b}{a+b}\,cot\dfrac{C}{2}=\dfrac{1}{3}\,cot\dfrac{C}{2}}

\mathsf{\dfrac{a-b}{a+b}=\dfrac{1}{3}}

\mathsf{3a-3b=a+b}

\mathsf{3a-a=b+3b}

\mathsf{2a=4b}

\mathsf{a=2b}

\mathsf{\dfrac{a}{b}=\dfrac{2}{1}}

\implies\boxed{\mathsf{a:b=2:1}}

\textbf{Find more:}

In triangle abc angle abc = 90 degree and angle acb = 30 degree then find AB:AC

https://brainly.in/question/14086812

In a triangle ABC,if 3angle A =4 angle B =6 angle C then A:B:C=?

https://brainly.in/question/4379969

If in a triangle abc angle a=pi/6 and b:c=2:sqrt3, find angle b

https://brainly.in/question/18930261

Answered by mahek77777
14

\textbf{Given:}

\mathsf{tan\left(\dfrac{A-B}{2}\right)=\dfrac{1}{3}\,tan\left(\dfrac{A+B}{2}\right)}

\textbf{To find:}

\textsf{a:b}

\textbf{Solution:}

\textbf{Napier's formula:}

\mathsf{In\;\triangle\,ABC,}

\boxed{\mathsf{tan\left(\dfrac{A-B}{2}\right)=\dfrac{a-b}{a+b}\,cot\dfrac{C}{2}}}

\mathsf{Consider,}

\mathsf{tan\left(\dfrac{A-B}{2}\right)=\dfrac{1}{3}\,tan\left(\dfrac{A+B}{2}\right)}

\mathsf{By\;Napier's\;formula,}

\mathsf{\dfrac{a-b}{a+b}\,cot\dfrac{C}{2}=\dfrac{1}{3}\,tan\left(\dfrac{180^\circ-C}{2}\right)}

\mathsf{\dfrac{a-b}{a+b}\,cot\dfrac{C}{2}=\dfrac{1}{3}\,tan\left(90^\circ-\dfrac{C}{2}\right)}

\mathsf{\dfrac{a-b}{a+b}\,cot\dfrac{C}{2}=\dfrac{1}{3}\,cot\dfrac{C}{2}}

\mathsf{\dfrac{a-b}{a+b}=\dfrac{1}{3}}

\mathsf{3a-3b=a+b}

\mathsf{3a-a=b+3b}

\mathsf{2a=4b}

\mathsf{a=2b}

\mathsf{\dfrac{a}{b}=\dfrac{2}{1}}

\implies\boxed{\mathsf{a:b=2:1}}

Similar questions