In a triangle ABC; let r1 =1, r2=2, r3=3, find the length of a, b, c.
Answers
Answer:
true
Step-by-step explanation:
please mark me as brainliest
Answer:
r
1
,r
2
,r
3
in H.P. ⇒ a,b,c, are in A.P. as in (b)
or 2b=a+c
2s=a+b+c=24
∴ 3b = 24 ⇒ b = 8
Hence a+c=16, by (1) and (2)
Again we are given that S=24
or 12(s−a)(s−b)(s−c)=24
2
or 12(12−a)(12−8)(12−c)=576
or (12−a)(12−c)=12
or 144−12(a+c)+ac=12
Put a+c=16 ∴ac=60
Thus a,c are the roots of t
2
- 16t + 60 = 0$$
t=10,6∴a=10,a=6,b=8,a=6,c=10,b=8
Hence sides are 6,8,10 or 10,8,6.
Step-by-step explanation:
r
1
,r
2
,r
3
in H.P. ⇒ a,b,c, are in A.P. as in (b)
or 2b=a+c
2s=a+b+c=24
∴ 3b = 24 ⇒ b = 8
Hence a+c=16, by (1) and (2)
Again we are given that S=24
or 12(s−a)(s−b)(s−c)=24
2
or 12(12−a)(12−8)(12−c)=576
or (12−a)(12−c)=12
or 144−12(a+c)+ac=12
Put a+c=16 ∴ac=60
Thus a,c are the roots of t
2
- 16t + 60 = 0$$
t=10,6∴a=10,a=6,b=8,a=6,c=10,b=8
Hence sides are 6,8,10 or 10,8,6.