Math, asked by Anonymous, 4 months ago

In a triangle ABC, medians AD and BE are drawn. If AD = 4, ∠DAB = π/6 and ∠ABE =π/3, then the area of the ΔABC is

(a) 8/3

(b) 16/3

(c) 32/3√3

(d) 64/3

Answers

Answered by genius1947
5

Question ⤵️

 \cos( \frac{\pi}{7} )  \times  \cos( \frac{2\pi}{7} )  \times  \cos( \frac{4\pi}{7} )

Solution ⤵️

 \cos( \frac{\pi}{7} )  \times  \cos( \frac{2\pi}{7} )  \times  \cos( \frac{4\pi}{7} )

 \implies \cos(20. \frac{\pi}{7} )  \times  \cos( {2}^{1}. \frac{\pi}{7}  )  \times  \cos( {2}^{2} . \frac{\pi}{7} )

 \implies  \frac{ \sin {2}^{3} ( \frac{\pi}{7} ) }{ {2}^{} . \sin \frac{\pi}{7}  }

( \because  \{ \cos(a). \cos(2a)... \cos( {2}^{n - 1}a ) =  \frac{ \sin( {2}^{n} a) }{ {2}^{n}  \sin a \: }

 \frac{ \sin(8 \frac{\pi}{7} ) }{8. \sin( \frac{\pi}{7} ) }  =  \frac{ \sin(\pi +  \frac{\pi}{7} ) }{8. \sin( \frac{\pi}{7} ) }

 \frac{ \sin(8 \frac{\pi}{7} ) }{8. \sin( \frac{\pi}{7} ) }  =  \frac{  \sin(\pi +  \frac{\pi}{7} ) }{8. \sin( \frac{\pi}{7} ) }  =  \frac{ -  \sin( \frac{\pi}{7} ) }{8. \sin( \frac{\pi}{7} ) }

 \implies \frac{ - 1}{8}

\small{\textbf{\textsf{{\color{navy}\:{Hope}}\:{\purple{it}}\:{\pink{helps}}\:{\color{pink}{you!!♡♡}}}}}

Answered by itzdivyanshi61
3

Answer:

c) is the answer dear

Step-by-step explanation:

30-Dec-2020 — In ΔABC, if cosA+2cosB+cosC=2andcot(A2)+cot(C2)=λcot(B2), then find the value of λ. JEE main admit card 2021 released, know step-by-step process to download the JEE Main 2021 admit card & Know key details related to JEE Main exam admit card. UP board class 12 exam 2021 from 24th April to 12th May 2021.

Attachments:
Similar questions