Math, asked by bharathijandhyala, 1 year ago

In a triangle ABC,prove that b cos^2C/2+c cos^2B/2=s

Answers

Answered by mysticd
81
i hope this will usful to u
Attachments:
Answered by babundrachoubay123
28

Answer:

L.H.S = R.H.S

Step-by-step explanation:

In this question

Given that

b\times cos^2(\frac{C}{2}) + c\times cos^2(\frac{B}{2}) = s

Formula,

2s = a + b + c

cos^2(\frac{C}{2}) = \frac{s\times (s - c)}{ab}

cos^2(\frac{B}{2}) = \frac{s\times (s - b)}{ac}    

Now we take R.H.S

b\times cos^2(\frac{C}{2}) + c\times cos^2(\frac{B}{2})

b\times \frac{s\times (s - c)}{ab} +  c\times \frac{s\times (s - b)}{ac}            

\frac{s\times (s - c)}{a} +  \frac{s\times (s - b)}{a}  

\frac{s}{a}\times (s - c + s - b)

\frac{s}{a}\times (2s - c - b)

\frac{s}{a}\times (a+ b + c - c - b)

\frac{s}{a}\times (a)

s

L.H.S

Hence, L.H.S = R.H.S

Similar questions