Math, asked by SnehaThapalyal, 7 months ago

in a triangle ABC prove that cos(A+B/2)=sinc/2?​

Answers

Answered by shadowsabers03
3

In a triangle ABC we have,

\longrightarrow A+B+C=\pi

Subtracting C from both sides,

\longrightarrow A+B=\pi-C

Dividing both sides by 2,

\longrightarrow\dfrac{A+B}{2}=\dfrac{\pi-C}{2}

\longrightarrow\dfrac{A+B}{2}=\dfrac{\pi}{2}-\dfrac{C}{2}

Taking cosine function on both sides,

\longrightarrow\cos\left(\dfrac{A+B}{2}\right)=\cos\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)\quad\quad\dots(1)

But we know that,

  • \cos\left(\dfrac{\pi}{2}-x\right)=\sin x

Then (1) becomes,

\longrightarrow\underline{\underline{\cos\left(\dfrac{A+B}{2}\right)=\sin\left(\dfrac{C}{2}\right)}}

Hence Proved!

Similar questions