Math, asked by Anonymous, 1 year ago

In a triangle ABC
Prove that :-
(Cos2A/a²)- (Cos2B/b²) = 1/a² - 1/b²

Answers

Answered by Anonymous
45

SOLUTION:-

Given:

In a ∆ABC,

To prove:

(cos2A/a²)- (cos2B/b²)=1/a² - 1/b²

Proof:

Let a,b & c be the sides of any ∆ABC.

Then by applying the sine rule, we get;

 =  >  \frac{a}{sinA}  =  \frac{b}{sinB}  =  \frac{c}{sinC}  = k

⚫a=k sinA

⚫b=k sinB

⚫c=k sinC

Take L.H.S,

 =  >  \frac{(cos2A)}{ {a}^{2} }  -  \frac{(cos2B)}{ {b}^{2} }  \\  \\  =  >  \frac{1 - 2sin {}^{2} a}{ {a}^{2}  }  -  \frac{1 -  {sin}^{2}b }{ {b}^{2} }  \:  \:  \:  \: [cos2A = 1 -  {sin}^{2} A]

Substituting the values from sine rule into the above equation, we get;

 =  >  \frac{1 - 2( \frac{a}{k} ) {}^{2} }{  {a}^{2} }  -  \frac{1 - ( \frac{b}{k}) {}^{2}  }{ {b}^{2} }  \\  \\  =  >  \frac{ {k}^{2} - 2 {a}^{2}  }{ \frac{ {k}^{2} }{ {a}^{2} } }  -  \frac{ {k}^{2}  - 2 {b}^{2} }{ \frac{ {k}^{2} }{ {b}^{2} } }  \\  \\  =  >  \frac{ {k}^{2} - 2 {a}^{2}  }{ {k}^{2}  {a}^{2} }  -  \frac{ {k}^{2} - 2 {b}^{2}  }{ {k}^{2}  {b}^{2} }  \\  \\  =  >  \frac{ {b}^{2}( {k}^{2}  - 2 {a}^{2}) -  {a}^{2}  ( {k}^{2}  - 2 {b}^{2})  }{ {k}^{2}  {a}^{2}  {b}^{2} }  \\  \\   =  >  \frac{ {b}^{2} {k}^{2} - 2 {a}^{2}   {b}^{2} -  {a}^{2} {k}^{2} + 2 {a}^{2}  {b}^{2}     }{ {k}^{2} {a}^{2}  {b}^{2}  }  \\  \\  =  >  \frac{ {b}^{2}  {k}^{2} -  {a}^{2} {k}^{2}   }{ {k}^{2} {a}^{2}   {b}^{2} }  \\  \\  =  >  \frac{ {b}^{2}  -  {a}^{2} }{ {a}^{2}  {b}^{2} }  \\  \\  =  >  \frac{ {b}^{2} }{ {a}^{2}  {b}^{2} }  -  \frac{ {a}^{2} }{ {a}^{2}  {b}^{2} }  \\  \\   =  >  \frac{1}{ {a}^{2} }  -  \frac{1}{ {b}^{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \: [R.H.S.]

Hence,

Proved.

Hope it helps ☺️

Similar questions