In a triangle ABC prove that cosA/2+ cosB/2+cosC/2=pie-A/2*pie-B/2*pie-C/2
Answers
Given :- in triangle ABC, prove that :- cosA/2+cosB/2+cosC/2 = 4cos(π-A/4)cos(π-B/4)cos(π-C/4)
Solution :-
Solving LHS,
→ cosA/2 + cosB/2 + cosC/2
→ (cosA/2 + cosB/2) + cosC/2
using :-
- cosP + cosQ = 2•cos(C+D/2)•cos(C-D/2)
- C = π - (A + B) => C/2 = π/2 - (A + B)/2
→ 2[cos(A/2 + B/2)/2•cos(A/2 - B/2)/2] + cos{π/2 - (A+B/2)}
→ 2[cos(A+B/4) • cos(A-B/4)] + sin(A+B/2)
using :-
- sin2P = 2sinP•cosP
→ 2[cos(A+B/4) • cos(A-B/4)] + 2•sin(A+B/4)•cos(A+B/4)
taking common now,
→ 2cos(A+B/4)[cos(A-B/4) + sin(A+B/4)]
using :-
A + B = π - C => (A+B/4) = (π-C/4)
→ 2cos(π - C/4)[cos(A-B/4) + sin(A+B/4)]
using :-
- sin P = cos(π/2 - P)
→ 2cos(π - C/4)[cos(A-B/4) + cos{π/2 - (A+B/4)}]
→ 2cos(π - C/4)[cos(A-B/4) + cos{(2π - (A+B)/4}]
using :-
- cos P + cos Q = 2•cos(C+D/2)•cos(C-D/2)
→ 2cos(π - C/4)[2•cos{(A-B/4)+(2π-(A+B)/4)}/2 • cos{(A-B/4)-(2π-(A+B)/4)}/2]
→ 2cos(π - C/4)[2•cos{(A - B + 2π-A-B)/8}•cos{(A-B-2π+A+B)/8}]
→ 4cos(π - C/4)[cos{(2π-2B)/8}•cos{(2A-2π)/8}]
→ 4cos(π - C/4)[cos(π-B/4)•cos(A-π/4)]
using :-
- cos (-P) = cos P
→ 4cos(π - C/4)[cos(π-B/4)•cos(π-A/4)]
→ 4•cos(π-A/4)•cos(π-B/4)•cos(π-C/4) = RHS (Proved).
{Excellent Question.}
Similar Question for Practice :-
a^3cos(B-C)+b^3cos(C-A)+c^3cos(A-B)=3abc
https://brainly.in/question/13088068