Math, asked by tbasu6790, 10 months ago

In a triangle ABC, prove that sin A/sin(A+B)=a/c​

Answers

Answered by sheebapud
4

Answer:

Step-by-step explanation:

a/sinA=b/sinB=c/sinC=2R

so, a=2RsinA

c=2RsinC

solving L.H.S.

»a/c

»2RsinA/2RsinC

»sinA/sinC

»sinA/sin(180-C) (because sin(180-x)=sinx)

»sinA/sin(A+B)=RHS

because A+B+C=180

SO 180-C=A+B

Answered by harendrachoubay
9

\dfrac{\sin A}{\sin(A+B)}=\dfrac{a}{c}, proved.

Step-by-step explanation:

To prove that \dfrac{\sin A}{\sin(A+B)}=\dfrac{a}{c}.

R.H.S. = \dfrac{a}{c}

Using sine rule,

\dfrac{a}{\sin A} =\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k

a = k\sin A, b = k\sin B and c = k\sin C

= \dfrac{a}{c}

= \dfrac{k\sin A}{k\sin C}

∵ A + B + C = 180°

⇒ C = 180° - (A + B)

= \dfrac{\sin A}{\sin (180° - (A + B))}

Using the trigonometric identity,

\sin (180-\theta)=\sin \theta

= \dfrac{\sin A}{\sin(A+B)}

= L.H.S., proved.

Thus, \dfrac{\sin A}{\sin(A+B)}=\dfrac{a}{c}, proved.

Similar questions