Math, asked by Gypo, 1 year ago

In A triangle ABC prove that


a \: cos \frac{b - c}{2}  = (b + c) \frac{sin \: a}{2}

Answers

Answered by Swarnimkumar22
18
\bold{\huge{\underline{Answer-}}}



 LHS = \: a \: cos \frac{B - C}{2}



 = \frac{sinA}{k} .cos \frac{B - C}{2} \\ \\ \\ \\ = \frac{1}{k} .2sin \frac{A}{2} cos \frac{A}{2} cos \frac{B - C}{2} \\ \\ \\ \\ = \frac{1}{k} .sin \frac{A}{2} .2cos \frac{A}{2} cos \frac{B - C}{2} \\ \\ \\ = \frac{1}{k} .sin \frac{A}{2} .2sin \frac{B + C}{2} cos \frac{B - C}{2}



[ \:A = \pi - ( B - C) \: and \: \: cos \frac{A}{2} = cos( \frac{\pi}{2} - \frac{B + C}{2}) = sin \frac{B + C}{2} ]



 = \frac{1}{k} sin \: \frac{A}{2} [sin( \frac{B + C}{2} + \frac{B - C}{2} ) + sin \: ( \frac{B + C}{2} - \frac{B - C}{2} )]



 = \frac{1}{k} sin \: \frac{A}{2} [sin \: B + sin \: C]



 = \frac{1}{k} sin \: \frac{A}{2}[bk + ck] = (b + c)sin \frac{A}{2}
Similar questions