In a triangle ABC r=R1+r3-r2 And angle B>pi/3 then the range of s/b
Answers
Answered by
0
b + 3c < 3a
Step-by-step explanation:
The question is incomplete. The full question is:
In an acute angled triangle ABC,r+r1=r2+r3and∠B>π3, then b+2c<2a<2b+2c b+4c<4a<2b+4c b+4c<4a<4b+4c b+3c<3a<3b+3c
Solution:
r + r1 = r2 + r3
r - r2 = r3 - r
∆/s - ∆/s-b = ∆/s-c - ∆/s-a
- b/s(s-b) = c-a/(s-a)(s-c)
(s-a)(s-c)/ s(s-b) = a-c/b
tan B/2 = √(s-a)(s-c) / s(s-b)
tan² B/2 = a-c/b --------------1
π/2 > B > π/3
π/4 > B/2 > π/6
1/3 < tan²(B/2) < 1
1/3 < a-c/b < 1
b/3 < a-c < b
b < 3a-3c
a-c < b
b + 3c < 3a
Similar questions