in a triangle ABC right angle at B.D is the mid point of BC.prove that AC²= AD²+3CD²
Answers
Answered by
2
Answer:
Given: In △ABC, ∠B = 90° and D is the mid-point of BC.
To Prove: AC2 = AD2 + 3CD2
Proof:
In △ABD,
AD2 = AB2 + BD2
AB2 = AD2 - BD2 .......(i)
In △ABC,
AC2 = AB2 + BC2
AB2 = AC2- BD2 ........(ii)
Equating (i) and (ii)
AD2 - BD2 = AC2 - BC2
AD2 - BD2 = AC2 - (BD + DC)2
AD2 - BD2 = AC2 - BD2- DC2- 2(BDx DC )
AD2 = AC2 - DC2 - 2DC2 (DC = BD)
AD2 = AC2 - 3DC2
AC2=AD2+3CD2
Step-by-step explanation:
Answered by
0
Answer:
∆ABC~∆ADB~∆BDC
<B=adb=bdc=90°
ad2+bd2=ab2••••••••••(1)
cd2+bd2=bc2 •••••••••(2)
ab2+bc2=ac2••••••••••(3)
bd2=ad×cd••••••••••••••(4)
ad=dc
adingin eq 1&2
ad2+cd2+2bd2=ab2+bc2
ad2+cd2+2(ad×dc)2=ac2
ad2+cd2+2cd2=ac2
ad2+3cd2=ac2
Similar questions
Math,
6 months ago
Math,
6 months ago
Math,
1 year ago
Political Science,
1 year ago
Physics,
1 year ago