In a triangle ABC right angled at B, AB =12cm, AC=13cm. Find BC.
Answers
Answer:
B =90°
AB=12 cm
AC=13
By Pythagoras theorem
AC square = AB square + BC square
169 = 144 + BC square
BC square = 169 - 144
BC square = 25
BC = 5 cm
PLZ FOLLOW ME
In △ABC,
⇒ ∠B=90
o
[ Given ]
⇒ AB=12cm and AC=13cm [ Given ]
Here, O is center of a circle and x is a radius.
⇒ (AC)
2
=(AB)
2
+(BC)
2
[ By Pythagoras theorem ]
⇒ (13)
2
=(12)
2
+(BC)
2
⇒ 169=144+(BC)
2
⇒ (BC)
2
=25
∴ BC=5cm
Now, AB,BC and CA are tangents to the circle at P,N and M respectively.
∴ OP=ON=OM=x [ Radius of a circle ]
⇒ Area of △ABC=
2
1
×BC×AB
=
2
1
×5×12
=30cm
2
Area of △ABC= Area of △OAB+ Area of △OBC+ Area of △OCA
⇒ 30=
2
1
x×AB+
2
1
x×BC+
2
1
x×CA
⇒ 30=
2
1
x(AB+BC+CA)
⇒ x= AB+BC+cα/2×30
⇒ x= 12+5+13/60
⇒ x= 60/30
∴ x=2cm