Math, asked by dikshatagala23, 10 months ago

In a triangle ABC right angled at C, if tan A = 1/√3 and tan B =√3, then
find the value of sin A cos B-cos A sin B​

Answers

Answered by Anonymous
2

Solution:-

 \rm  \tan(A)  =  \frac{1}{ \sqrt{3} }  =  \frac{p}{b}

Now

  \rm \: p = 1 \:  \: b =  \sqrt{3}  \:  \: and \:  \: h = x

Using phythogoeros theorem

  \rm \: {h}^{2}  =  {p}^{2}  +  {b}^{2}

We get

 \rm {h}^{2}  =  {1}^{2}  + ( \sqrt{3} ) {}^{2}

 \rm \:  {h}^{2}  = 1 + 3

 \rm \:  {h}^{2}  = 4

 \rm \: h = 2

So we get ,

\rm \: p = 1 \:  \: b =  \sqrt{3}  \:  \: and \:  \: h = 2

Now

 \rm \:  \sin(A)  =  \frac{1}{2}  =  \frac{p}{h}

 \rm  \cos(A)  =  \frac{ \sqrt{3} }{2}  =  \frac{b}{h}

Now take

 \rm  \tan(B)  =  \frac{ \sqrt{3} }{1}  =  \frac{p}{b}

 \rm \: p =  \sqrt{3}  \: \:  \:   \: b \:  = 1 \:  \: and \: h = x

Using phythogoeros theorem

 \rm \:  {h}^{2}  =  {b}^{2}  +  {p}^{2}

 \rm \:  {h}^{2}  =  {1}^{2}  + ( \sqrt{3} ) {}^{2}

 \rm \:  {h}^{2}  = 1 + 3

 \rm \:  {h}^{2}  = 4

 \rm \: h = 2

We get

\rm \: p =  \sqrt{3}  \: \:  \:   \: b \:  = 1 \:  \: and \: h = 2

then

 \rm \:  \sin(B)  =  \frac{ \sqrt{3} }{2}  =  \frac{p}{h}

 \rm \:  \cos(B)  =  \frac{1}{2}  =  \frac{b}{h}

We have to find

 \rm \sin(A)  \cos(B)  -  \sin(B)  \cos(A)

Put the value

 \rm \:  \frac{1}{2}  \times  \frac{1}{2}  -  \frac{ \sqrt{3} }{2}  \times  \frac{ \sqrt{3} }{2}

 \rm \:  \frac{1}{4}  -  \frac{3}{4}

 \rm \:   \frac{ - 2}{4}

 \to \:  \frac{ - 1}{2}

Answer:-

 \implies \frac{ - 1}{2}

Similar questions