Math, asked by nmahendra2005, 10 months ago

in a triangle ABC sin power 4 + sin power 4 + sin power 4 C equals to​

Answers

Answered by Agastya0606
0

Given: A triangle ABC.

To find: The value of  sin^4 A + sin^4 B + sin^4 C

Solution:

  • Now we know the formulas:

           sin²x = 1 - cos 2x / 2

           (sin²x)² = sin^4 x = (1 - cos 2x / 2)² .................(i)

  • Also, we have:

           cos 2A + cos 2B + cos 2C = - 1 - 4 cos A cos B cos C  ..........(ii)

           cos² 2A + cos² 2B + cos² 2C = 1 + 2 cos 2A cos 2B cos 2C   ......(iii)

  • Now we have:

           sin^4 A + sin^4 B + sin^4 C

  • Using (i), we get:

           (1 - cos 2A / 2)² + (1 - cos 2B / 2)² + (1 - cos 2C / 2)²

  • Expanding it, we get:

           1/4 x { (1 + cos² 2A - 2 cos 2A) + (1 + cos² 2B - 2 cos 2B) + (1 + cos² 2C - 2 cos 2C) }

           1/4 x { cos² 2A + cos² 2B + cos² 2C - 2 (cos 2A + cos 2B + cos 2C) + 3 }

  • Using ii and iii, we get:

           1/4 x { 1 + 2 cos 2A cos 2B cos 2C  - 2 (- 1 - 4 cos A cos B cos C) + 3 }

           1/4 x { 4 + 2 cos 2A cos 2B cos 2C  + 2 + 8 cos A cos B cos C }

           4/4 + (2 cos 2A cos 2B cos 2C / 4) + (2/4) + (8 cos A cos B cos C / 4)

  • Using (ii), we get:

           1 + (  - 1 - 4 cos A cos B cos C  / 2) + (1/2) + (2 cos A cos B cos C )

           1 - 1/2 - 2 cos A cos B cos C + 1/2 + 2 cos A cos B cos C

           1

Answer:

             So the value of sin^4 A + sin^4 B + sin^4 C is 1.

Similar questions