in a triangle ABC sin power 4 + sin power 4 + sin power 4 C equals to
Answers
Given: A triangle ABC.
To find: The value of sin^4 A + sin^4 B + sin^4 C
Solution:
- Now we know the formulas:
sin²x = 1 - cos 2x / 2
(sin²x)² = sin^4 x = (1 - cos 2x / 2)² .................(i)
- Also, we have:
cos 2A + cos 2B + cos 2C = - 1 - 4 cos A cos B cos C ..........(ii)
cos² 2A + cos² 2B + cos² 2C = 1 + 2 cos 2A cos 2B cos 2C ......(iii)
- Now we have:
sin^4 A + sin^4 B + sin^4 C
- Using (i), we get:
(1 - cos 2A / 2)² + (1 - cos 2B / 2)² + (1 - cos 2C / 2)²
- Expanding it, we get:
1/4 x { (1 + cos² 2A - 2 cos 2A) + (1 + cos² 2B - 2 cos 2B) + (1 + cos² 2C - 2 cos 2C) }
1/4 x { cos² 2A + cos² 2B + cos² 2C - 2 (cos 2A + cos 2B + cos 2C) + 3 }
- Using ii and iii, we get:
1/4 x { 1 + 2 cos 2A cos 2B cos 2C - 2 (- 1 - 4 cos A cos B cos C) + 3 }
1/4 x { 4 + 2 cos 2A cos 2B cos 2C + 2 + 8 cos A cos B cos C }
4/4 + (2 cos 2A cos 2B cos 2C / 4) + (2/4) + (8 cos A cos B cos C / 4)
- Using (ii), we get:
1 + ( - 1 - 4 cos A cos B cos C / 2) + (1/2) + (2 cos A cos B cos C )
1 - 1/2 - 2 cos A cos B cos C + 1/2 + 2 cos A cos B cos C
1
Answer:
So the value of sin^4 A + sin^4 B + sin^4 C is 1.