in a triangle ABC the measure of angle A is 40 degrees less than the measure of angle B and 50 degrees less than that of angle C. find the measure of angle A
Answers
Step-by-step explanation:
Given:
\textsf{In}\,\mathsf{\triangle\,ABC}In△ABC
\mathsf{\angle{A}=\angle{B}-40^{\circ}}∠A=∠B−40
∘
\mathsf{\angle{A}=\angle{C}-50^{\circ}}∠A=∠C−50
∘
\underline{\textsf{To find:}}
To find:
\mathsf{\angle{A}}∠A
\underline{\textsf{Solution:}}
Solution:
\textsf{From the given information, we get}From the given information, we get
\mathsf{\angle{B}=\angle{A}+40^{\circ}}∠B=∠A+40
∘
\mathsf{\angle{C}=\angle{A}+50^{\circ}}∠C=∠A+50
∘
\textsf{We know that, Sum of interior angles of a triangle is}\;\mathsf{180^{\circ}}We know that, Sum of interior angles of a triangle is180
∘
\implies\mathsf{\angle{A}+\angle{B}+\angle{C}=180^{\circ}}⟹∠A+∠B+∠C=180
∘
\implies\mathsf{\angle{A}+\angle{A}+40^{\circ}+\angle{A}+50^{\circ}=180^{\circ}}⟹∠A+∠A+40
∘
+∠A+50
∘
=180
∘
\implies\mathsf{3\,\angle{A}+90^{\circ}=180^{\circ}}⟹3∠A+90
∘
=180
∘
\implies\mathsf{3\,\angle{A}=180^{\circ}-90^{\circ}}⟹3∠A=180
∘
−90
∘
\implies\mathsf{3\,\angle{A}=90^{\circ}}⟹3∠A=90
∘
\implies\boxed{\mathsf{\angle{A}=30^{\circ}}}⟹
∠A=30
∘
\underline{\textsf{Answer:}}
Answer:
\mathsf{\angle{A}=30^{\circ}}∠A=30
∘