In a triangle abc then the value of acosa +bcosb +ccosc/ a+b+c
Answers
Answered by
1
Applying Cosine rule:
cosA=b2+c2−a22bccosA=b2+c2−a22bc
⟹a.cosA=a.b2+a.c2−a32bc=a2.b2+a2.c2−a42abc⟹a.cosA=a.b2+a.c2−a32bc=a2.b2+a2.c2−a42abc
Similarly, b.cosB=b2.c2+a2.b2−b42abcb.cosB=b2.c2+a2.b2−b42abc
c.cosC=a2.c2+b2.c2−c42abcc.cosC=a2.c2+b2.c2−c42abc
Let S=a.cosA+b.cosB+c.cosCa+b+c=S=a.cosA+b.cosB+c.cosCa+b+c=
a2.b2+a2.c2−a4+b2.c2+a2.b2−b4+a2.c2+b2.c2−c42abc(a+b+c)a2.b2+a2.c2−a4+b2.c2+a2.b2−b4+a2.c2+b2.c2−c42abc(a+b+c)
S=2.a2.b2+2.b2.c2+2.c2.a2−a4−b4−c42abc(a+b+c)S=2.a2.b2+2.b2.c2+2.c2.a2−a4−b4−c42abc(a+b+c)
S=−(a2+b2+c2)22abc(a+b+c)
cosA=b2+c2−a22bccosA=b2+c2−a22bc
⟹a.cosA=a.b2+a.c2−a32bc=a2.b2+a2.c2−a42abc⟹a.cosA=a.b2+a.c2−a32bc=a2.b2+a2.c2−a42abc
Similarly, b.cosB=b2.c2+a2.b2−b42abcb.cosB=b2.c2+a2.b2−b42abc
c.cosC=a2.c2+b2.c2−c42abcc.cosC=a2.c2+b2.c2−c42abc
Let S=a.cosA+b.cosB+c.cosCa+b+c=S=a.cosA+b.cosB+c.cosCa+b+c=
a2.b2+a2.c2−a4+b2.c2+a2.b2−b4+a2.c2+b2.c2−c42abc(a+b+c)a2.b2+a2.c2−a4+b2.c2+a2.b2−b4+a2.c2+b2.c2−c42abc(a+b+c)
S=2.a2.b2+2.b2.c2+2.c2.a2−a4−b4−c42abc(a+b+c)S=2.a2.b2+2.b2.c2+2.c2.a2−a4−b4−c42abc(a+b+c)
S=−(a2+b2+c2)22abc(a+b+c)
Similar questions