In a triangle ABC write cos(B+c/2)in terms of A
Answers
Answer:
SinA/2
Step-by-step explanation:
Question is incomplete it is as follows
In a ΔABC find Value of Cos(B+C/2)
To find--->Value of cos(B+C/2)
------------
Solution---->We know that sum of angles
------------- of triangle is 180⁰
So , A+B+C=180⁰
=> B+C=180⁰-A
Now Cos(B+C/2)=Cos(180⁰-A/2)
=Cos(180⁰/2 - A/2)
= Cos(90⁰- A/2)
We know that Cos(90⁰-θ)=sinθ
=sin(A/2)
Additional information--->
------------------------------------
1)Sin(90⁰-θ)=Cosθ
2)tan(90⁰-θ)=Cotθ
3)Cot(90⁰-θ)=tanθ
4)Sec(90⁰-θ)=Cosecθ
5)Cosec(90⁰-θ)=Secθ
6)Sin²θ+Cos²θ=1
7)1+tan²θ=sec²θ
8)1+Cot²θ=cosec²θ
Step-by-step explanation:
Angle sum property of a triangle
angle A+ Angle B + angle B = 180 degree
- = Angle B + angle C = 180 - angle A
- B+C/2 = 180- A/2
- B+C/2 = 90- A/2
- COS (b+c/2) - cos (90°- A/2)
- Cos (B+C/2) = Sin A/2