In a triangle, ∠P - ∠Q = 40° and ∠P + ∠Q = 90°
∠P= ?
∠Q= ?
∠R= ?
Answers
Answer:
angle P =65°
angle Q=25°
angle R =90°
Step-by-step explanation:
adding
angle p - angle q + angle p + angle q =40+90
(+angle q and - angle q will be zero)
so . 2p = 130°
p = 130/2
so angle p = 65°
given
p - q = 40°
65 - q = 40°
65 - 40 = q
q = 25°
according to angle sum property of triangle
p + q + r =180°
90 + r = 180°
r = 90°
Answer:
In triangle PQR,
angle P - angle Q = 40° - (i) given
angle P + angle Q = 90° - (i) given
Adding (i) and (ii)
P - Q = 40°
P + Q = 90°
------------------
2P = 130°
:. P = 65°
Substitute P = 65° in (i)
P - Q = 40°
65 - Q = 40°
- Q = 40° - 65°
- Q = - 25°
:. Q = 25°
We know that, In triangle PQR,
angle P + angle Q + angle R = 180° - (Sum of measures of all angles in a triangle)
65° + 25° + R = 180°
90° + R = 180°
R = 180° - 90°
:. R = 90°
Hope it helps :) Please mark it as The Brainliest !!!