Math, asked by BhoomiArpit, 6 months ago

In a triangle PQR , angle Q=3angleR=2(angle P + angleR), then find the value of angleQ​

Answers

Answered by Anonymous
20

 \huge \orange{ \overbrace{ \red{\underbrace \color{blue} {\underbrace \color{black}{\colorbox{lime}{ {\red \: {EDUQUERY}}}}}}}}

QUESTION✪:-

In a triangle PQR , angle Q=3angleR=2(angle P + angleR), then find the value of aangleQ

GIVEN✪:-

  • ∠Q = 3∠R
  • ∠Q = 2(∠P + ∠R)
  • 3∠R = 2(∠P + ∠R)

TO FIND✪:-

  • ∠Q

ANSWER✪:-

➥ 3∠R = 2(∠P + ∠R) [ from given ]

➥3∠R = 2∠P + 2∠R

➥3∠R - 2∠R = 2∠P

➥∠R = 2∠P ➜(1)

➠∠Q = 3∠R [ from given ]

➠∠Q = 3( 2∠P ) [from (1)]

➠∠Q = 6∠P ➜ (2)

we know that ,

sum of all the angles of the triangle = 180°

∠P + ∠Q + ∠R = 180°

∠P + 6∠P + 2∠P = 180 °[from (1) and (2) ]

9∠P = 180°

∠P = 180°/9

∠P = 20°

(1) ∠R = 2∠P = 2(20°) = 40°

(2)➜∠Q =6∠P = 6(20°) = 120°

therefore ,

angles of the triangle are

  • ∠P = 20°
  • ∠Q =120°
  • ∠R = 40°
Similar questions