in a triangle PQR right angled at Q, PR+QR= 25cm and PQ=5cm. Determine the value of sin p, cos p, tan p
Answers
Answered by
6
Required Answer:
Given:
- PQR is a right-angled triangle, Angle Q = 90°.
- PR + QR = 25cm
- PQ = 5cm
To find:
- Value of sin P, cos P , tan P.
Calculation:
Here,
- PQ ( Base ) = 5cm
- PR ( Hypotenuse )
- PQ ( Perpendicular )
Let us assume PQ as x. Thus,
- PR becomes 25 - x
Now, by applying pythagoras property:
H² = B² + P²
( 25 - x )² = (5)² + (x)²
625 + x² - 50x = 25 + x²
625 - 25 - 50x = x² - x²
600 - 50x = 0
-50x = 0 - 600
-50x = -600
x = -600/-50
x = 12 cm
Now,
- PQ (x)= 12cm [Perpendicular]
- PR (25-x) → 25 - 12 → 13 cm [Hypo.]
- Base = 5cm
Also, we know that,
● sin = Perpendicular/Hypotenuse
sin P = 12/13
____________
● cos = Base/Hypotenuse
cos P = 5/13
____________
● tan = Perpendicular/Base
tan P = 12/5
__________________________________
Extra info:
● sin = Perpendicular/Hypotenuse
● cosec = Hypotenuse/Perpendicular
● cos = Base/Hypotenuse
● sec = Hypotenuse/Base
● tan = Perpendicular/Base
● cot = Base/Perpendicular
___________________________
Similar questions