Math, asked by kukusaini74510, 3 months ago

in a triangle PQR right angled at Q, PR+QR= 25cm and PQ=5cm. Determine the value of sin p, cos p, tan p​

Answers

Answered by Yuseong
6

Required Answer:

Given:

  • PQR is a right-angled triangle, Angle Q = 90°.

  • PR + QR = 25cm

  • PQ = 5cm

To find:

  • Value of sin P, cos P , tan P.

Calculation:

Here,

  • PQ ( Base ) = 5cm
  • PR ( Hypotenuse )
  • PQ ( Perpendicular )

Let us assume PQ as x. Thus,

  • PR becomes 25 - x

Now, by applying pythagoras property:

 \longrightarrow H² = B² + P²

 \longrightarrow ( 25 - x )² = (5)² + (x)²

 \longrightarrow 625 + x² - 50x = 25 + x²

 \longrightarrow 625 - 25 - 50x = x² - x²

 \longrightarrow 600 - 50x = 0

 \longrightarrow -50x = 0 - 600

 \longrightarrow -50x = -600

 \longrightarrow x = -600/-50

 \longrightarrow x = 12 cm

Now,

  • PQ (x)= 12cm                 [Perpendicular]
  • PR (25-x) → 25 - 12 → 13 cm [Hypo.]
  • Base = 5cm

Also, we know that,

● sin  \theta = Perpendicular/Hypotenuse

 \longrightarrow sin P = 12/13

____________

● cos  \theta = Base/Hypotenuse

 \longrightarrow cos P = 5/13

____________

● tan  \theta = Perpendicular/Base

 \longrightarrow tan P = 12/5

__________________________________

Extra info:

● sin  \theta = Perpendicular/Hypotenuse

● cosec  \theta = Hypotenuse/Perpendicular

● cos  \theta = Base/Hypotenuse

● sec  \theta = Hypotenuse/Base

● tan  \theta = Perpendicular/Base

● cot  \theta = Base/Perpendicular

___________________________

Similar questions