Math, asked by hello12345abc, 9 months ago

In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

Answers

Answered by pulakmath007
13

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO PROVE

 \displaystyle \sf{(b + c - a) \bigg( \:  \cot  \frac{B}{2}  +  \cot \frac{C}{2}  \bigg)  = 2a \cot  \frac{A}{2} \: }

PROOF

For a triangle a, b, c are the sides and

perimeter = 2s

 \sf{So  \:  \:  \: 2s = a+b+c}

 \sf{ \implies \:  2s  - a= b+c}

LHS

 =  \displaystyle \sf{(b + c - a) \bigg( \:  \cot  \frac{B}{2}  +  \cot \frac{C}{2}  \bigg)   \: }

 =  \displaystyle \sf{(2s - a - a) \bigg[\:   \frac{s(s - b)}{ \Delta}   +   \frac{s(s - c)}{ \Delta}  \bigg  ]  \: }

 =  \displaystyle \sf{(2s - 2a ) \bigg[\:   \frac{s(s - b)}{ \Delta}   +   \frac{s(s - c)}{ \Delta}  \bigg  ]  \: }

 =  \displaystyle \sf{ \frac{2s( s - a)}{ \Delta} \bigg[\:  s - b + s - c  \bigg  ]  \: }

 =  \displaystyle \sf{ \frac{2s( s - a)}{ \Delta} \bigg[\: 2 s - b  - c  \bigg  ]  \: }

 =  \displaystyle \sf{ \frac{2s( s - a)}{ \Delta} \bigg[\: a + b + c - b  - c  \bigg  ]  \: }

 =  \displaystyle \sf{ \frac{2s( s - a)}{ \Delta}  \:  \times a\: }

 =  \displaystyle \sf{2a \times  \frac{s( s - a)}{ \Delta}  \: }

 \displaystyle \sf{ =  2a \cot  \frac{A}{2} \: }

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

tan⁻¹2 +tan⁻¹3 is =

Select Proper option from the given options.

(a) - π/4

(b) π/2

(c) 3π/4

(d) 3π/2

https://brainly.in/question/5596487

Similar questions