Math, asked by lathamanidini1983, 9 months ago

in a triangle the angles are in ap such that the largest angle in turice the smaller angle find all the angles​

Answers

Answered by ks78182k
0

Answer:

40

40Let the angles be a−d,a,a+d, where a and d are first term and common difference respectively.

40Let the angles be a−d,a,a+d, where a and d are first term and common difference respectively.∴a−d+a+a+d=180                       (∵sum of angles of trianlge)

40Let the angles be a−d,a,a+d, where a and d are first term and common difference respectively.∴a−d+a+a+d=180                       (∵sum of angles of trianlge)3a=180⇒a=60

40Let the angles be a−d,a,a+d, where a and d are first term and common difference respectively.∴a−d+a+a+d=180                       (∵sum of angles of trianlge)3a=180⇒a=60Also, a+d=2(a−d)                                   (Given)

40Let the angles be a−d,a,a+d, where a and d are first term and common difference respectively.∴a−d+a+a+d=180                       (∵sum of angles of trianlge)3a=180⇒a=60Also, a+d=2(a−d)                                   (Given)⇒60+d=2(60−d)

40Let the angles be a−d,a,a+d, where a and d are first term and common difference respectively.∴a−d+a+a+d=180                       (∵sum of angles of trianlge)3a=180⇒a=60Also, a+d=2(a−d)                                   (Given)⇒60+d=2(60−d)⇒3d=60⇒d=20

40Let the angles be a−d,a,a+d, where a and d are first term and common difference respectively.∴a−d+a+a+d=180                       (∵sum of angles of trianlge)3a=180⇒a=60Also, a+d=2(a−d)                                   (Given)⇒60+d=2(60−d)⇒3d=60⇒d=20Therefore, angles are 60−20,60,60+20 i.e.40,60,80

40Let the angles be a−d,a,a+d, where a and d are first term and common difference respectively.∴a−d+a+a+d=180                       (∵sum of angles of trianlge)3a=180⇒a=60Also, a+d=2(a−d)                                   (Given)⇒60+d=2(60−d)⇒3d=60⇒d=20Therefore, angles are 60−20,60,60+20 i.e.40,60,80Difference =80−40=40

Similar questions