Math, asked by aarti03rawat, 1 year ago

In a triangle, the average of any two sides is 6cm more than half of the third side. Find area of the triangle

Answers

Answered by Abhishek63715
22
let a,b,c are 3 Sides
so , a+b-c=6
a+c-b=6
b+c-a= 6
add all three questions
a+b+c= 18.
a+b = b+6 (given
so , 2c= 12
c= 6
and So , a&b = 6
hence ,it is an equilateral triangle
so, area = √3/4×6²
= 9√3 ans.
Answered by bandameedipravalika0
2

Answer:

Concept:

A triangle is a 3-sided polygon that is occasionally (though not frequently) referred to as the trigon.

Step-by-step explanation:

  • The triangle's internal angle, which is 180 degrees, is constructed. It implies that the internal angles of a triangle add up to 180 degrees. It is the polygon with the fewest sides.
  • There are three sides and three angles in every triangle, some of which may be the same.
  • Triangle's area =\frac{1}{2}  \times b \times h square units.

where the triangle's base and height, respectively, are denoted by b and h.

Given:

The average of any two sides is 6cm more than half of the third side.

To find:

Area of the triangle

Solution:

  • Let the three sides be s1,s2 and s3
  • By given data,

                             \frac{s1+s2}{2} =6+(\frac{1}{2} \times s3)

                              \frac{s1+s2}{2} =6+\frac{s3}{2}

                              \frac{s1+s2}{2}-\frac{s3}{2}= 6

                             s1+s2-s3=6      ⇒    A

  • In a similar way,

            s1+s3-s2=6       ⇒    B        and

            s2+s3-s1=6        ⇒  C

  • On simplifying  A and B,

                       2s1=12  

                        s1=\frac{12}{2}

                          s1=6

  • On simplifying B and C,                  

                         2s3=12

                           s3=\frac{12}{2}

                             s3=6

  • On simplifying A and C,

                        2s2=12

                         s2=\frac{12}{2}

                          s2=6        

  • All sides are equal i.e. s1=s2=s3=6 cm.  Hence, its an equilateral triangle.
  • Area of equilateral triangle = \frac{\sqrt{3} }{4} \times side^{2}   sq.cm
  • Substituting value of side,

                             Area =     \frac{\sqrt{3} }{4} \times 6^{2}

                                       =  \frac{\sqrt{3} }{4} \times 36

                                         =9\sqrt{3}

Hence, area of triangle = 9\sqrt{3}  sq.cm      

                             

#SPJ2

Similar questions