Math, asked by shalenderkhatri, 1 year ago

In a triangle xyz angle X is 20 degree more than angle Y and 25 degree more than angle Z find angle x

Answers

Answered by Cubingwitsk
13

Let the angles be x, y and z


Then, According to the question,

 \angle x =  \angle y + 20°  

 \angle y =  \angle x - 20°     ......(i)

 \angle x =  \angle z + 25°    

 \angle z =  \angle x - 25° ......(ii)


According to angle sum property of a triangle, We have ;


 \angle x + \angle y + \angle z = 180°       ......(iii)

 \angle x + (\angle x -20^{\circ}) + (\angle x -25^{\circ}) = 180°  

 \angle x + \angle x - 20^{\circ} + \angle x - 25^{\circ} = 180°

 3 \angle x - 20^{\circ}- 25^{\circ}) = 180°

 3 \angle x - 45^{\circ}) = 180°

 3 \angle x = 180°+ 45°

 3 \angle x = 225°

 \angle x = \frac{225^{\circ}}{3}

 \angle x = \frac{\cancel{225^{\circ}}}{\cancel{3}}

 \angle x = \frac{75^{\circ}}{1}


 \angle x = 75°

 \angle y =  \angle x - 20° = 75°- 20° = 55°

 \angle z =  \angle x - 25° = 75°- 25° = 50°


∴ Angles are x = 75° , y = 55° , z = 50°

Similar questions