Math, asked by zikra6307, 2 months ago

in a two digit number the digit of unit place is double the digit in ten's place the number exeede the sum of digit by 18 then the number is

Answers

Answered by mathdude500
4

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{unit \: digit \: is \: twice \: the \: tens \: digit} \\ &\sf{number \: exceeds \: the \: sum \: of \: digit \: by \: 18} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{the \: number}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{Solution :-  }}

\sf \:  ⟼✬ \:  Let \:  digit  \: at  \: tens \:  place  \: be  \: x.

\sf \:  ⟼ \: then \:  digit  \: at  \: ones \:  place  \: be \:  2x

\bf \:   ✬ \: Number  \: formed \:  = \: 10 \times x + 2x \times 1 \\

\bf \:   ✬ \: Number  \: formed \:  = \: 12x -  -  -  -  (1)

According to the statement

☆ Two digit number exceeds the sum of digits by 18

\bf\implies \:12x - (x + 2x) = 18

\bf\implies \:12x - 3x = 18

\bf\implies \:9x = 18

\bf\implies \:x = 2

\begin{gathered}\begin{gathered}\bf  Hence :-  \begin{cases} &\sf{two \: digit \: number \:  = 12x = 12 \times 2 = 24}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

 

Similar questions