In a uniform electric field, the potential is 10 V at the origin of coordinates, and 8V at each of the points (1, 0, 0), (0, 1, 0) and(0, 0, 1). The potential at the point (1, 1, 1) will be
Answers
Answered by
3
Dgdgjd
દુઆઈહે gdgrbrud dybdv
દુઆઈહે gdgrbrud dybdv
Answered by
1
Answer:4 V
Explanation:Let the electric field vector E→=Exi^+Eyj^+Ezk^E→=Exi^+Eyj^+Ezk^
VA−VB=−∫ABE→.drVA−VB=−∫BAE→.dr
V(1,0,0)−V(0,0,0)=−∫(1,0,0)(0,0,0)Ex=[−Exx](1,0,0)(0,0,0)V(1,0,0)−V(0,0,0)=−∫(0,0,0)(1,0,0)Ex=[−Exx](0,0,0)(1,0,0)
8−10=−Ex8−10=−Ex
Ex=2Ex=2
Similarly V(0,1,0)−V(0,0,0)=−∫(0,1,0)(0,0,0)EydyV(0,1,0)−V(0,0,0)=−∫(0,0,0)(0,1,0)Eydy
−2=−Ey×1−2=−Ey×1
Similarly Ez=2Ez=2
Thus
E→=2i^+2j^+2k^E→=2i^+2j^+2k^
Now
V(1,1,1)−V(0,0,0)=−∫(1,1,1)(0,0,0)(2i^+2j^+2k^).(dxi^+dyj^+dzk^)V(1,1,1)−V(0,0,0)=−∫(0,0,0)(1,1,1)(2i^+2j^+2k^).(dxi^+dyj^+dzk^)
=−∫(1,1.1)(0,0,0)(2dx+2dy+2dz)=−∫(0,0,0)(1,1.1)(2dx+2dy+2dz)
=−(2×1+2×1+2×1)=−(2×1+2×1+2×1)
V(1,1,1)−10=−6V(1,1,1)−10=−6
V(1,1,1)=4V.
Similar questions