In AABC, if DE is parallel to BC, AD= x+1, DB=x-1, AE = x+3 and
EC = x, then the value of x is:
Answers
Given :-
To Find :-
Solution :-
According to Basic proportionally theorem,
Hence,
- The value of x is 3.
Answer:
◦•●◉✿Given :-
\sf{In\: ΔABC, \: DE || BC.}InΔABC,DE∣∣BC.
\sf{AD= x+1, \:DB=x-1,\: AE = x+3\: and\: EC = x.}AD=x+1,DB=x−1,AE=x+3andEC=x.
To Find :-
\sf{The \:value\: of \:x. }Thevalueofx.
Solution :-
\sf{In \:ΔABC, \: DE || BC,}InΔABC,DE∣∣BC,
According to Basic proportionally theorem,
↪ \sf \: \red{ \frac{AD}{DB} = \frac{AE}{EC}}↪
DB
AD
=
EC
AE
\sf{[ Putting \: values ]}[Puttingvalues]
↪ \sf \: \frac{x+1}{x-1}=\frac{x+3}{x}↪
x−1
x+1
=
x
x+3
↪ \sf \: x(x + 1) = (x + 3)(x + 1)↪x(x+1)=(x+3)(x+1)
↪ \sf \: x {}^{2} + x = x {}^{2} - x + 3x - 3↪x
2
+x=x
2
−x+3x−3
↪ \sf \: x = - x + 3x - 3↪x=−x+3x−3
↪ \sf \: x = 2x - 3↪x=2x−3
↪ \sf \: x - 2x = - 3↪x−2x=−3
↪ \sf \: - x = - 3↪−x=−3
↪ \sf \: \blue{ x = 3}↪x=3
Hence,
The value of x is 3.✿◉●•◦
Step-by-step explanation:
◦•●◉✿plz follow me as a friend or sister✿◉●•◦