In △ABC, ∠A = 50° and BC is produced to a point D. The bisectors of ∠ABC and ∠ACD meet at E. Find ∠E.
Answers
In Δ ABC, Using exterior angle theorem :
ext. ∠ACD = ∠A + ∠B
½ ext. ∠ACD = ½ ∠A + ½ ∠B
½ (2∠2 ) = ½ ∠A + ½ (2∠1)
[∵ BE & CE are bisectors of ∠B & ∠ACD, i.e ∠B = 2∠1 , ∠ACD = 2∠2]
∠2 = ½ ∠A + ∠1 ………(1)
In Δ BCE, Using exterior angle theorem :
ext. ∠ACD = ∠1 + ∠E
∠2 = ∠1 + ∠E ……….(2)
From eq 1 and 2 ,
½ ∠A + ∠1 = ∠1 + ∠E
½ ∠A = ∠E
∠E = ½ ∠A
∠E = ½ × 50°
[Given ∠A = 50°]
∠E = 25°
Hence the value of ∠E is 25° .
Among the given options option (A) 25° is correct.
Answer:
In Δ ABC, Using exterior angle theorem :
ext. ∠ACD = ∠A + ∠B
½ ext. ∠ACD = ½ ∠A + ½ ∠B
½ (2∠2 ) = ½ ∠A + ½ (2∠1)
[∵ BE & CE are bisectors of ∠B & ∠ACD, i.e ∠B = 2∠1 , ∠ACD = 2∠2]
∠2 = ½ ∠A + ∠1 ………(1)
In Δ BCE, Using exterior angle theorem :
ext. ∠ACD = ∠1 + ∠E
∠2 = ∠1 + ∠E ……….(2)
From eq 1 and 2 ,
½ ∠A + ∠1 = ∠1 + ∠E
½ ∠A = ∠E
∠E = ½ ∠A
∠E = ½ × 50°
[Given ∠A = 50°]
∠E = 25°
Hence the value of ∠E is 25° .
Among the given options option (A) 25° is correct.