In ΔABC, ∠A = 90° , AC=5 , BC=13 , the find sinB, tanC.
Answers
➣
⭐∠A = 90°
⭐AC = 5
⭐BC = 13
➣
⭐sin B = ?
⭐tan c = ?
➣
In Δ ABC ,
By Pythagoras Theorem
BC² = AB² + AC²
13². = AB + 5²
AB² = 169 - 25
AB =
AB = 12
Now we have
AB = 12cm
AC = 5cm
BC = 13 cm
________________________________
sin =
tan =
________________________________
⟶ sinB =
⟶ tanC =
________________________________
Hope it helps
Answer:
➣ \underline\bold\blue{Given}
Given
⭐∠A = 90°
⭐AC = 5
⭐BC = 13
➣ \underline\bold\blue{To Find}
ToFind
⭐sin B = ?
⭐tan c = ?
➣ \underline\bold\blue{solution}
solution
In Δ ABC ,
By Pythagoras Theorem
\implies⟹ BC² = AB² + AC²
\implies⟹ 13². = AB + 5²
\implies⟹ AB² = 169 - 25
\implies⟹ AB = \sqrt{144}
144
\implies⟹ AB = 12
Now we have
AB = 12cm
AC = 5cm
BC = 13 cm
________________________________
\big\purple\star sin = \dfrac{perpendicular}{Hypotonuse}
Hypotonuse
perpendicular
\big\purple\star tan = \dfrac{perpendicular}{Base}
Base
perpendicular
________________________________
⟶ sinB = \dfrac{5}{13}
13
5
⟶ tanC = \dfrac{12}{5}
5
12
________________________________
Hope it helps