In ∆ABC,
(a) If
(b) Prove that angles of ∆ACD and ∆BCD are equal.
(c) If the perpendicular from the right angles vertex of a right triangle divides the
opposite side into parts of lengths a and b and if the length of the perpendicular is
h, then prove that h
2 = ab.
Answers
Answered by
1
To Prove : △ADE∼△ACB
Proof :
(i) In △ADE and △ACB
(1) ∠A=∠A [common]
(2) ∠AED=∠ABC=90o (given)
∴ △ADE∼△ACB [AA axiom]
(ii) (AC)2=(AB)2+(BC)2
169=(AB)2+25
AB=12cm
∵ △ADE∼△ACB
∴ BCDE=ACAD=ABAE
∴ BCDE=ABAE
5DE=124
DE=1220=35=132cm
Now, ACAD=ABAE
13AD=124
AD=1213×4=313=431cm.
(iii) Ar.of(△ADE)Ar.of(△ABC)=AE2AB2=16144=19
Ar.of(△ADE)Ar.of(△ADE)+Ar.of(BCED)=9
1+Ar.of(△ADE)Ar.of(BCED)=9
Ar.of(BCED)Ar.of(△ADE)=81
please mark as brainliest
Similar questions