Math, asked by fahadtareq2004, 2 months ago

In ⧍ABC, AB = 2x + 5, BC = 3x–2, AC = 4x-8. Find all possible values of x. Then name the smallest and largest angles of ⧍XYZ.

Answers

Answered by amitnrw
1

Given : ⧍ABC, AB = 2x + 5, BC = 3x–2, AC = 4x-8

To Find : all possible values of x.

Solution:

AB = 2x + 5, BC = 3x–2, AC = 4x-8

Sum of any two sides > third side

=> AB + BC > AC

=> 2x + 5 + 3x - 2 > 4x - 8

=> x >  - 11

AB + AC > BC

=> 2x + 5 + 4x - 8  > 3x - 2

=> 3x  > 1

=> x > 1/3

AC + BC > AB

=> 4x - 8 + 3x - 2 > 2x + 5

=> 5x >  15

=> x > 3

x >  - 11 , x > 1/3 ,  x > 3

Hence  x > 3

All possible value of x ∈ (3 ,  ∞ )

smallest and largest angle will depend upon value of x

x = 4   => AB = 13  , BC = 10  , AC = 4

Largest angle = C  and smallest angle  =  B

x = 6.5  => AB = 18  BC = 17.5 , AC= 18

Smallest angle = A   and  largest angle C & B are equal

x = 10 => AB = 25 , BC = 28  , AC = 32

=> Largest angle = B  and smallest angle  =  C

Learn More:

The perimeter of a triangle is 12 cm. Ifall the three sides have lengths

brainly.in/question/14012739

Triangle abc has integer sides x y z such that xz=12 how many such ...

brainly.in/question/14258783

Similar questions