In ∆ABC, AB=AC. AD is perpendicular to BC.
The length of CD
options
AD
BD
BC
AB
No spam..
Answers
height(H)=120cm
\sf\dashrightarrow \blue{diameter of roller= 84cm}⇢diameterofroller=84cm
\sf\therefore \blue{radius= \dfrac{diameter}{2}}∴radius=
2
diameter
\sf\dashrightarrow \blue{ \dfrac{84}{2}}⇢
2
84
\sf\dashrightarrow \blue{\cancel \dfrac{84}{2}}⇢
2
84
\sf\dashrightarrow \blue{radius= 42cm}⇢radius=42cm
\large\underline\mathfrak{\purple{TO\:FIND,}}
TOFIND,
\sf\dashrightarrow \red{AREA\: OF\:PLAYGROUND }⇢AREAOFPLAYGROUND
FORMULA
\rm{\boxed{\sf{ \circ\:\: C.S.A\: OF\: CYLINDER= 2 \pi rh \:\: \circ}}}
∘C.S.AOFCYLINDER=2πrh∘
\large\underline\mathtt{\purple{SOLUTION,}}
SOLUTION,
© ATQ,
\purple{\text{AREA COVERED BY ROLLER IN 1 REVOLUTION = PERIMETER OF ROLLER}}AREA COVERED BY ROLLER IN 1 REVOLUTION = PERIMETER OF ROLLER
\sf\therefore \pink{AREA \:COVERED \:IN\: ONE\: REVOLUTION= 2 \pi r h}∴AREACOVEREDINONEREVOLUTION=2πrh
\sf\implies \red{ 2 \times \dfrac{22}{7} \times 42 \times 120}⟹2×
7
22
×42×120